
Sparse Matrix and its representations | Set 1 (Using Arrays and Linked Lists)

A matrix is a two-dimensional data object made of m rows and n columns,

therefore having total m x n values. If most of the elements of the matrix have 0

value, then it is called a sparse matrix.

Why to use Sparse Matrix instead of simple matrix ?

• Storage: There are lesser non-zero elements than zeros and thus lesser

memory can be used to store only those elements.

• Computing time: Computing time can be saved by logically designing a

data structure traversing only non-zero elements..

Example:

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Representing a sparse matrix by a 2D array leads to wastage of lots of memory

as zeroes in the matrix are of no use in most of the cases. So, instead of storing

zeroes with non-zero elements, we only store non-zero elements. This means

storing non-zero elements with triples- (Row, Column, value).

Sparse Matrix Representations can be done in many ways following are two

common representations:

1. Array representation

2. Linked list representation

Method 1: Using Arrays

2D array is used to represent a sparse matrix in which there are three rows

named as

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non zero element located at index – (row,column)

• C++

• Java

filter_none

https://www.geeksforgeeks.org/data-structures/#Matrix
https://media.geeksforgeeks.org/wp-content/uploads/Sparse-Matrix-Array-Representation1.png

edit

play_arrow

brightness_4

// C++ program for Sparse Matrix Representation

// using Array

#include<stdio.h>

int main()

{

 // Assume 4x5 sparse matrix

 int sparseMatrix[4][5] =

 {

 {0 , 0 , 3 , 0 , 4 },

 {0 , 0 , 5 , 7 , 0 },

 {0 , 0 , 0 , 0 , 0 },

 {0 , 2 , 6 , 0 , 0 }

 };

 int size = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 size++;

 // number of columns in compactMatrix (size) must be

 // equal to number of non - zero elements in

 // sparseMatrix

 int compactMatrix[3][size];

 // Making of new matrix

 int k = 0;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 if (sparseMatrix[i][j] != 0)

 {

 compactMatrix[0][k] = i;

 compactMatrix[1][k] = j;

 compactMatrix[2][k] = sparseMatrix[i][j];

 k++;

 }

 for (int i=0; i<3; i++)

 {

 for (int j=0; j<size; j++)

 printf("%d ", compactMatrix[i][j]);

 printf("\n");

 }

 return 0;

}

Output:

0 0 1 1 3 3

2 4 2 3 1 2

3 4 5 7 2 6

Method 2: Using Linked Lists

In linked list, each node has four fields. These four fields are defined as:

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non zero element located at index – (row,column)

• Next node: Address of the next node

filter_none

edit

play_arrow

brightness_4

// C program for Sparse Matrix Representation

// using Linked Lists

#include<stdio.h>

#include<stdlib.h>

// Node to represent sparse matrix

struct Node

https://media.geeksforgeeks.org/wp-content/uploads/Sparse-Matrix-Linked-List-22.png

{

 int value;

 int row_position;

 int column_postion;

 struct Node *next;

};

// Function to create new node

void create_new_node(struct Node** start, int

non_zero_element,

 int row_index, int column_index)

{

 struct Node *temp, *r;

 temp = *start;

 if (temp == NULL)

 {

 // Create new node dynamically

 temp = (struct Node *) malloc (sizeof(struct Node));

 temp->value = non_zero_element;

 temp->row_position = row_index;

 temp->column_postion = column_index;

 temp->next = NULL;

 *start = temp;

 }

 else

 {

 while (temp->next != NULL)

 temp = temp->next;

 // Create new node dynamically

 r = (struct Node *) malloc (sizeof(struct Node));

 r->value = non_zero_element;

 r->row_position = row_index;

 r->column_postion = column_index;

 r->next = NULL;

 temp->next = r;

 }

}

// This function prints contents of linked list

// starting from start

void PrintList(struct Node* start)

{

 struct Node *temp, *r, *s;

 temp = r = s = start;

 printf("row_position: ");

 while(temp != NULL)

 {

 printf("%d ", temp->row_position);

 temp = temp->next;

 }

 printf("\n");

 printf("column_postion: ");

 while(r != NULL)

 {

 printf("%d ", r->column_postion);

 r = r->next;

 }

 printf("\n");

 printf("Value: ");

 while(s != NULL)

 {

 printf("%d ", s->value);

 s = s->next;

 }

 printf("\n");

}

// Driver of the program

int main()

{

 // Assume 4x5 sparse matrix

 int sparseMatric[4][5] =

 {

 {0 , 0 , 3 , 0 , 4 },

 {0 , 0 , 5 , 7 , 0 },

 {0 , 0 , 0 , 0 , 0 },

 {0 , 2 , 6 , 0 , 0 }

 };

 /* Start with the empty list */

 struct Node* start = NULL;

 for (int i = 0; i < 4; i++)

 for (int j = 0; j < 5; j++)

 // Pass only those values which are non - zero

 if (sparseMatric[i][j] != 0)

 create_new_node(&start, sparseMatric[i][j], i, j);

 PrintList(start);

 return 0;

}

Output:

row_position: 0 0 1 1 3 3

column_postion: 2 4 2 3 1 2

Value: 3 4 5 7 2 6

Other representations:

As a Dictionary where row and column numbers are used as keys and values

are matrix entries. This method saves space but sequential access of items is

costly.

As a list of list. The idea is to make a list of rows and every item of list contains

values. We can keep list items sorted by column numbers.

Sparse Matrix and its representations | Set 2 (Using List of Lists and Dictionary

of keys)

Adding two polynomials using Linked List

Given two polynomial numbers represented by a linked list. Write a function that add these lists means add the
coefficients who have same variable powers.

Example:

Input:

 1st number = 5x^2 + 4x^1 + 2x^0

 2nd number = 5x^1 + 5x^0

Output:

 5x^2 + 9x^1 + 7x^0

Input:

 1st number = 5x^3 + 4x^2 + 2x^0

https://www.geeksforgeeks.org/sparse-matrix-representations-using-list-lists-dictionary-keys/
https://www.geeksforgeeks.org/sparse-matrix-representations-using-list-lists-dictionary-keys/

 2nd number = 5x^1 + 5x^0

Output:

 5x^3 + 4x^2 + 5x^1 + 7x^0

Program to add two polynomials

Given two polynomials represented by two arrays, write a function that adds given two polynomials.

Example:
Input: A[] = {5, 0, 10, 6}

 B[] = {1, 2, 4}

Output: sum[] = {6, 2, 14, 6}

The first input array represents "5 + 0x^1 + 10x^2 + 6x^3"

The second array represents "1 + 2x^1 + 4x^2"

And Output is "6 + 2x^1 + 14x^2 + 6x^3"

Addition is simpler than multiplication of polynomials. We initialize result as one of the two polynomials, then we
traverse the other polynomial and add all terms to the result.
add(A[0..m-1], B[0..n01])
1) Create a sum array sum[] of size equal to maximum of 'm' and 'n'
2) Copy A[] to sum[].
3) Travers array B[] and do following for every element B[i]
 sum[i] = sum[i] + B[i]
4) Return sum[].
The following is implementation of above algorithm.

• C++
// Simple C++ program to add two polynomials
#include <iostream>
using namespace std;

https://www.geeksforgeeks.org/multiply-two-polynomials-2/
http://cdncontribute.geeksforgeeks.org/wp-content/uploads/Addition-of-two-polynomial.png

// A utility function to return maximum of two integers
int max(int m, int n) { return (m > n)? m: n; }

// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
int *add(int A[], int B[], int m, int n)
{
 int size = max(m, n);
 int *sum = new int[size];

 // Initialize the porduct polynomial
 for (int i = 0; i<m; i++)
 sum[i] = A[i];

 // Take ever term of first polynomial
 for (int i=0; i<n; i++)
 sum[i] += B[i];

 return sum;
}

// A utility function to print a polynomial
void printPoly(int poly[], int n)
{
 for (int i=0; i<n; i++)
 {
 cout << poly[i];
 if (i != 0)
 cout << "x^" << i ;
 if (i != n-1)
 cout << " + ";
 }
}

// Driver program to test above functions
int main()
{
 // The following array represents polynomial 5 +

10x^2 + 6x^3
 int A[] = {5, 0, 10, 6};

 // The following array represents polynomial 1 + 2x

+ 4x^2
 int B[] = {1, 2, 4};
 int m = sizeof(A)/sizeof(A[0]);
 int n = sizeof(B)/sizeof(B[0]);

 cout << "First polynomial is \n";
 printPoly(A, m);
 cout << "\nSecond polynomial is \n";
 printPoly(B, n);

 int *sum = add(A, B, m, n);
 int size = max(m, n);

 cout << "\nsum polynomial is \n";

 printPoly(sum, size);

 return 0;
}

Output:
First polynomial is

5 + 0x^1 + 10x^2 + 6x^3

Second polynomial is

1 + 2x^1 + 4x^2

Sum polynomial is

6 + 2x^1 + 14x^2 + 6x^3

Time complexity of the above algorithm and program is O(m+n) where m and n are orders of two given
polynomials.

C PROGRAM FOR POLYNOMIAL ADDITION USING ARRAYS

#include<stdio.h>
void main()

{

int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j;

printf(“Enter the number of terms in first polynomial : “);

scanf(“%d”,&term1);

printf(“Enter the number of terms in second polynomial : “);

scanf(“%d”,&term2);

printf(“Enter the coeff and expo of the first polynomial:\n”);

for(i=0;i<term1;i++)

{

scanf(“%d %d”,&poly1[i][0],&poly1[i][1]);

}

printf(“Enter the coeff and expo of the second polynomial:\n”);

for(i=0;i<term2;i++)

{

scanf(“%d %d”,&poly2[i][0],&poly2[i][1]);

}

printf(“The resultant polynomial after addition :\n”);

for(i=0;i<term1;i++)

{

match=0;

for(j=0;j<term2;j++)

{

if(match==0)

if(poly1[i][1]==poly2[j][1])

{

printf(“%d %d\n”,(poly1[i][0]+poly2[j][0]), poly1[i][1]);

match=1;

}

}

}

for(i=0;i<term1;i++)

{

proceed=1;

for(j=0;j<term2;j++)

{

if(proceed==1)

if(poly1[i][1]!=poly2[j][1])

proceed=1;

else

proceed=0;

}

if(proceed==1)

printf(“%d %d\n”,poly1[i][0],poly1[i][1]);

}

for(i=0;i<term2;i++)

{

proceed=1;

for(j=0;j<term1;j++)

{

if(proceed==1)

if(poly2[i][1]!=poly1[j][1])

proceed=1;

else

proceed=0;

}

if(proceed==1)

printf(“%d %d”,poly2[i][0],poly2[i][1]);

}

getch();

}

SORTINGS:

Insertion Sort

Insertion sort is a simple sorting algorithm that works the way we sort playing

cards in our hands.

Algorithm

// Sort an arr[] of size n

insertionSort(arr, n)

Loop from i = 1 to n-1.

……a) Pick element arr[i] and insert it into sorted sequence arr[0…i-1]

Example:

Another Example:

12, 11, 13, 5, 6

Let us loop for i = 1 (second element of the array) to 4 (last element of the

array)

i = 1. Since 11 is smaller than 12, move 12 and insert 11 before 12

11, 12, 13, 5, 6

i = 2. 13 will remain at its position as all elements in A[0..I-1] are smaller than

13

11, 12, 13, 5, 6

i = 3. 5 will move to the beginning and all other elements from 11 to 13 will

move one position ahead of their current position.

5, 11, 12, 13, 6

i = 4. 6 will move to position after 5, and elements from 11 to 13 will move one

position ahead of their current position.

5, 6, 11, 12, 13

// C program for insertion sort

#include <math.h>

#include <stdio.h>

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/insertionsort.png

/* Function to sort an array using insertion sort*/

void insertionSort(int arr[], int n)

{

 int i, key, j;

 for (i = 1; i < n; i++) {

 key = arr[i];

 j = i - 1;

 /* Move elements of arr[0..i-1], that are

 greater than key, to one position ahead

 of their current position */

 while (j >= 0 && arr[j] > key) {

 arr[j + 1] = arr[j];

 j = j - 1;

 }

 arr[j + 1] = key;

 }

}

// A utility function to print an array of size n

void printArray(int arr[], int n)

{

 int i;

 for (i = 0; i < n; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

/* Driver program to test insertion sort */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6 };

 int n = sizeof(arr) / sizeof(arr[0]);

 insertionSort(arr, n);

 printArray(arr, n);

 return 0;

}

Output:

5 6 11 12 13

Radix Sort

The lower bound for Comparison based sorting algorithm (Merge Sort, Heap

Sort, Quick-Sort .. etc) is Ω(nLogn), i.e., they cannot do better than nLogn.

Counting sort is a linear time sorting algorithm that sort in O(n+k) time when

elements are in range from 1 to k.

What if the elements are in range from 1 to n2?

We can’t use counting sort because counting sort will take O(n2) which is worse

than comparison based sorting algorithms. Can we sort such an array in linear

time?

Radix Sort is the answer. The idea of Radix Sort is to do digit by digit sort

starting from least significant digit to most significant digit. Radix sort uses

counting sort as a subroutine to sort.

The Radix Sort Algorithm

1) Do following for each digit i where i varies from least significant digit to the

most significant digit.

………….a) Sort input array using counting sort (or any stable sort) according

to the i’th digit.

Example:

Original, unsorted list:

170, 45, 75, 90, 802, 24, 2, 66

Sorting by least significant digit (1s place) gives: [*Notice that we keep 802

before 2, because 802 occurred before 2 in the original list, and similarly for

pairs 170 & 90 and 45 & 75.]

170, 90, 802, 2, 24, 45, 75, 66

Sorting by next digit (10s place) gives: [*Notice that 802 again comes before

2 as 802 comes before 2 in the previous list.]

802, 2, 24, 45, 66, 170, 75, 90

Sorting by most significant digit (100s place) gives:

2, 24, 45, 66, 75, 90, 170, 802

What is the running time of Radix Sort?

Let there be d digits in input integers. Radix Sort takes O(d*(n+b)) time

where b is the base for representing numbers, for example, for decimal

system, b is 10. What is the value of d? If k is the maximum possible value,

then d would be O(logb(k)). So overall time complexity is O((n+b) * logb(k)).

https://www.geeksforgeeks.org/lower-bound-on-comparison-based-sorting-algorithms/
https://www.geeksforgeeks.org/counting-sort/
http://en.wikipedia.org/wiki/Radix_sort

Which looks more than the time complexity of comparison based sorting

algorithms for a large k. Let us first limit k. Let k <= nc where c is a

constant. In that case, the complexity becomes O(nLogb(n)). But it still

doesn’t beat comparison based sorting algorithms.

What if we make value of b larger?. What should be the value of b to make

the time complexity linear? If we set b as n, we get the time complexity as

O(n). In other words, we can sort an array of integers with range from 1 to

nc if the numbers are represented in base n (or every digit takes log2(n)

bits).

Is Radix Sort preferable to Comparison based sorting algorithms like Quick-

Sort?

If we have log2n bits for every digit, the running time of Radix appears to

be better than Quick Sort for a wide range of input numbers. The constant

factors hidden in asymptotic notation are higher for Radix Sort and Quick-

Sort uses hardware caches more effectively. Also, Radix sort uses counting

sort as a subroutine and counting sort takes extra space to sort numbers.

Address Calculation sort

• This technique uses hasing function for sorting the elements. Any hashing function

f(x) that can be used for sorting should have this property.

If X<Y, then f(X)<=f(y)

• These types of functions are called non decreasing functions or order preserving

hashing functions.

• This function can be applied to each element, and according to the value of the

hashing function each element is placed in a particular set.

• When two elements are to be placed in the same set, then they are placed in the same

set, then they are placed in sorted order. Now we will take some numbers and sort

them using address calculation sort.

• 194,289,566,432,654,98,232,415,345,276,532,254,165,965,476

• Let us take a function f(x) whose value is equal to the first digit of X, this will

obviously be a non decreasing function because if first digit of any number A is less

than the first digit of any number B, A will definitely be less then B.

TOWERS OF HANOI

Program for Tower of Hanoi

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks.

The objective of the puzzle is to move the entire stack to another rod, obeying

the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and

placing it on top of another stack i.e. a disk can only be moved if it is the

uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.

Approach :

Take an example for 2 disks :

Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.

Step 1 : Shift first disk from 'A' to 'B'.

Step 2 : Shift second disk from 'A' to 'C'.

Step 3 : Shift first disk from 'B' to 'C'.

The pattern here is :

Shift 'n-1' disks from 'A' to 'B'.

Shift last disk from 'A' to 'C'.

Shift 'n-1' disks from 'B' to 'C'.

Image illustration for 3 disks :

Examples:

Input : 2

Output : Disk 1 moved from A to B

 Disk 2 moved from A to C

 Disk 1 moved from B to C

Input : 3

Output : Disk 1 moved from A to C

 Disk 2 moved from A to B

 Disk 1 moved from C to B

 Disk 3 moved from A to C

 Disk 1 moved from B to A

 Disk 2 moved from B to C

 Disk 1 moved from A to C

/*IMPLEMENTATION OF TOWERS OF HANOI USING C*/

#include<stdio.h>

int hanoi(int,char,char,char);

void main()

https://media.geeksforgeeks.org/wp-content/uploads/tower-of-hanoi.png

{

int n,c;

printf("Enter number of disks:");

scanf("%d",&n);

c=hanoi(n,'A','B','C');

printf("Number of steps required is:%d",c);

}

int hanoi(int n,char beg,char mid,char end)

{

static int count;

if(n>0)

{

hanoi(n-1,beg,end,mid);

printf("Move disk %d from %c to %c \n",n,beg,end);

count++;

hanoi(n-1,mid,beg,end);

 }

return(count);

}

