
 

 

UNIT 4 

Introduction 

Lists, stacks, and queues, are all linear structures: in all three data structures, one 

item follows another. Trees will be our first non-linear structure: 

• More than one item can follow another. 

• The number of items that follow can vary from one item to another. 

Trees have many uses: 

• representing family genealogies 

• as the underlying structure in decision-making algorithms 

• to represent priority queues (a special kind of tree called a heap) 

• to provide fast access to information in a database (a special kind of tree 

called a b-tree) 

Here is the conceptual picture of a tree (of letters): 

 

• each letter represents one node 

• the arrows from one node to another are called edges 

• the topmost node (with no incoming edges) is the root (node A) 

• the bottom nodes (with no outgoing edges) are the leaves (nodes D, I, G & 

J) 

So a (computer science) tree is kind of like an upside-down real tree... 

A path in a tree is a sequence of (zero or more) connected nodes; for example, 

here are 3 of the paths in the tree shown above: 



 

 

 

 

The length of a path is the number of nodes in the path, e.g.: 

 

The height of a tree is the length of the longest path from the root to a leaf; for 

the above example, the height is 4 (because the longest path from the root to a 

leaf is A → C → E → G, or A → C → E → J). An empty tree has height = 0. 

The depth of a node is the length of the path from the root to that node; for the 

above example: 

• the depth of J is 4 

• the depth of D is 3 

• the depth of A is 1 

Given two connected nodes like this: 

 

Node A is called the parent, and node B is called the child. 

A subtree of a given node includes one of its children and all of that 

child's descendants. The descendants of a node n are all nodes reachable 

from n (n's children, its children's children, etc.). In the original example, node A 

has three subtrees: 

1. B, D 

2. I 



 

 

3. C, E, F, G, J. 

An important special kind of tree is the binary tree. In a binary tree: 

• Each node has 0, 1, or 2 children. 

• Each child is either a left child or a right child. 

Here are two examples of binary trees that are different: 

  

The two trees are different because the children of node B are different: in the 

first tree, B's left child is D and its right child is E; in the second tree, B's left child 

is E and its right child is D. Also note that lines are used instead of arrows. We 

sometimes do this because it is clear that the edge goes from the higher node to 

the lower node. 

Binary trees 

A binary tree is a structure comprising nodes, where each node has the following 

3 components:  

1. Data element: Stores any kind of data in the node  

2. Left pointer: Points to the tree on the left side of node  

3. Right pointer: Points to the tree on the right side of the node 

 



 

 

Commonly-used terminologies 

✓ Root: Top node in a tree  

✓ Child: Nodes that are next to each other and connected downwards  

✓ Parent: Converse notion of child  

✓ Siblings: Nodes with the same parent  

✓ Descendant: Node reachable by repeated proceeding from parent to 

child  

✓ Ancestor: Node reachable by repeated proceeding from child to parent.  

✓ Leaf: Node with no children 

✓ Internal node: Node with at least one child  

✓ External node: Node with no children 

Structure code of a tree node 

In programming, trees are declared as follows:  

struct node 

    { 

         int data;                 //Data element 

         struct node * left;          //Pointer to left node 

         struct node * right;         //Pointer to right node 

    }; 

Types of binary tree 

Tree terminology is not well-standardized and so varies in the literature.  

• A rooted binary tree has a root node and every node has at most two children. 

 

A full binary tree 

https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Root_node
https://en.wikipedia.org/wiki/File:Full_binary.svg


 

 

• A full binary tree (sometimes referred to as a proper or plane binary tree) is 

a tree in which every node has either 0 or 2 children. Another way of defining 

a full binary tree is a recursive definition. A full binary tree is either:  

• A single vertex. 

• A graph formed by taking two (full) binary trees, adding a vertex, and 

adding an edge directed from the new vertex to the root of each binary tree. 

• In a complete binary tree every level, except possibly the last, is completely 

filled, and all nodes in the last level are as far left as possible. It can have 

between 1 and 2h nodes at the last level h. An alternative definition is a perfect 

tree whose rightmost leaves (perhaps all) have been removed. Some authors 

use the term complete to refer instead to a perfect binary tree as defined above, 

in which case they call this type of tree an almost complete binary tree or 

nearly complete binary tree. A complete binary tree can be efficiently 

represented using an array.  

 

A complete binary tree 

• A perfect binary tree is a binary tree in which all interior nodes have two 

children and all leaves have the same depth or same level. An example of a 

perfect binary tree is the ancestry chart of a person to a given depth, as each 

person has exactly two biological parents (one mother and one father). 

• In the infinite complete binary tree, every node has two children (and so the 

set of levels is countably infinite). The set of all nodes is countably infinite, 

but the set of all infinite paths from the root is uncountable, having the 

cardinality of the continuum. These paths correspond by an order-preserving 

https://en.wikipedia.org/wiki/Recursive_definition
https://en.wikipedia.org/wiki/Ancestry_chart
https://en.wikipedia.org/wiki/Countably_infinite
https://en.wikipedia.org/wiki/Cardinality_of_the_continuum
https://en.wikipedia.org/wiki/File:Complete_binary.svg


 

 

bijection to the points of the Cantor set, or (using the example of a Stern–

Brocot tree) to the set of positive irrational numbers. 

• A balanced binary tree is a binary tree structure in which the left and right 

subtrees of every node differ in height by no more than 1. One may also 

consider binary trees where no leaf is much farther away from the root than 

any other leaf. (Different balancing schemes allow different definitions of 

"much farther".) 

• A degenerate (or pathological) tree is where each parent node has only one 

associated child node. This means that performance-wise[the tree will behave 

like a linked list data structure. 

Traversing the tree 

Inorder Traversal 
 
Algorithm Inorder(tree) 

   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 

   2. Visit the root. 

   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 

void printInorder(struct Node* node)  

{  

    if (node == NULL)  

        return;  

    printInorder(node->left);  

    cout << node->data << " ";  

    printInorder(node->right);  

}  
 
Preorder Traversal  
 
Algorithm Preorder(tree) 

   1. Visit the root. 

   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 

   3. Traverse the right subtree, i.e., call Preorder(right-subtree)  

 

 

 

https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Cantor_set
https://en.wikipedia.org/wiki/Stern%E2%80%93Brocot_tree
https://en.wikipedia.org/wiki/Stern%E2%80%93Brocot_tree
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Linked_list


 

 

void printPreorder(struct Node* node)  

{  

    if (node == NULL)  

        return;  

    cout << node->data << " ";  

    printPreorder(node->left);  

    printPreorder(node->right);  

}   
 
Postorder Traversal 
 
Algorithm Postorder(tree) 

   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 

   3. Visit the root. 

void printPostorder(struct Node* node)  

{  

    if (node == NULL)  

        return;  

    printPostorder(node->left);   

    printPostorder(node->right);   

    cout << node->data << " ";  

}  

Main applications of trees include 

1. Manipulate hierarchical data.  

2. Make information easy to search (see tree traversal).  

3. Manipulate sorted lists of data.  

4. As a workflow for compositing digital images for visual effects.  

5. Router algorithms  

6. Form of a multi-stage decision-making. 

Binary Search Tree 

Binary Search Tree is a node-based binary tree data structure which has the 

following properties:  



 

 

✓ The left subtree of a node contains only nodes with keys lesser than the 

node’s key.  

✓ The right subtree of a node contains only nodes with keys greater than the 

node’s key.  

✓ The left and right subtree each must also be a binary search tree. 

Binary Search Tree (Search and Insertion) 

✓ The above properties of Binary Search Tree provide an ordering among 

keys so that the operations like search, minimum and maximum can be 

done fast. If there is no ordering, then we may have to compare every key 

to search a given key. 

✓ To search a given key in Binary Search Tree, we first compare it with root, 

if the key is present at root, we return root. If key is greater than root’s key, 

we recur for right subtree of root node. Otherwise we recur for left subtree. 

Binary Search Tree (Delete)  

When we delete a node, three possibilities arise.  

1. Node to be deleted is leaf: Simply remove from the tree. 

2. Node to be deleted has only one child: Copy the child to the node and 

delete the child 

3. Node to be deleted has two child: Replace with highest value in left sub 

tree or least value in right sub tree and delete the node. 


