
DATA STRUCTURES AND APPLICATIONS 15CS33

 Module -1

 Introduction

 Teaching Hours: 10

 CONTENTS Pg no

 1. Introduction to Data Structures 2

 1.1. Classification of Data Structures 2

 1.2. Data structure Operations 3

 1.3. Review of Structures Unions and Pointers 3

 1.4. Self Referential Structures 10

 2. Arrays 11

 2.1. Operations 14

 2.2. Multidimensional Arrays 20

 2.3. Applications of Arrays 22

 3. Strings 23

 3.1. String manipulation Applications 26

 4. Dynamic Memory Management Functions 26

Dept. of CSE, ACE Page 1

DATA STRUCTURES AND APPLICATIONS 15CS33

1. Introduction to Data Structures

Data Structure is a way of collecting and organising data in such a way that we can perform operations on these

data in an effective way. Data Structures is about rendering data elements in terms of some relationship, for

better organization and storage. For example, we have data player's name "Virat" and age 26. Here "Virat" is of

String data type and 26 is of integer data type

1.1. Classification of Data Structures

Data structures can be classified as

· Simple data structure

· Compound data structure

· Linear data structure

· Non linear data structure

Simple Data Structure:

Simple data structure can be constructed with the help of primitive data structure. A primitive data

structure used to represent the standard data types of any one of the computer languages. Variables, arrays,

pointers, structures, unions, etc. are examples of primitive data structures.

Compound Data structure:

Compound data structure can be constructed with the help of any one of the primitive data structure and it

is having a specific functionality. It can be designed by user. It can be classified as

1) Linear data structure
2) Non-linear data structure

Dept. of CSE, ACE Page 2

DATA STRUCTURES AND APPLICATIONS 15CS33

Linear data structure :

Collection of nodes which are logically adjacent in which logical adjacency is maintained by pointers

1.2. Data structure Operations

The following list of operations applied on linear data structures

1. Add an element

2. Delete an element

3. Traverse

4. Sort the list of elements

5. Search for a data element

1.3. Review of Structures Unions and Pointers

STURCTURES

Arrays allow to define type of variables that can hold several data items of the same kind. Similarly structure is

another user defined data type available in C that allows to combine data items of different kinds.Structures are

used to represent a record. Suppose you want to keep track of your books in a library. You might want to track

the following attributes about each book −

 Title


 Author


 Subject


 Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a new data type, with

more than one member. The format of the struct statement is as follows −

 struct [structure tag] {

 member definition;

 member definition;
 ...

Dept. of CSE, ACE Page 3

DATA STRUCTURES AND APPLICATIONS 15CS33

 member definition;

 } [one or more structure variables];

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member access operator is

coded as a period between the structure variable name and the structure member that we wish to access. You

would use the keyword struct to define variables of structure type. The following example shows how to use a

structure in a program –

#include <stdio.h>

#include <string.h>

struct Books {

char title[50];

char author[50];

char subject[100];

int book_id;

};

int main() {

struct Books Book1;

/* Declare Book1 of type Book */

struct Books Book2;

/* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

Dept. of CSE, ACE Page 4

DATA STRUCTURES AND APPLICATIONS 15CS33

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Book1.title);

printf("Book 1 author : %s\n", Book1.author);

printf("Book 1 subject : %s\n", Book1.subject);

printf("Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);

printf("Book 2 subject : %s\n", Book2.subject);

printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

}

UNIONS

A union is a special data type available in C that allows to store different data types in the same memory

location. You can define a union with many members, but only one member can contain a value at any given

time. Unions provide an efficient way of using the same memory location for multiple-purpose.

Defining a Union

To define a union, you must use the union statement in the same way as you did while defining a structure.

The union statement defines a new data type with more than one member for your program. The format of the

union statement is as follows −

union [union tag] {

member definition;

member definition;

...

member definition;

Dept. of CSE, ACE Page 5

DATA STRUCTURES AND APPLICATIONS 15CS33

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as int i; or float f; or

any other valid variable definition. At the end of the union's definition, before the final semicolon, you can

specify one or more union variables but it is optional. Here is the way you would define a union type named

Data having three members i, f, and str −

union Data {

int i;

float f;

char str[20];

} data;

Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. It means a

single variable, i.e., same memory location, can be used to store multiple types of data. You can use any built-

in or user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union. For example,

in the above example, Data type will occupy 20 bytes of memory space because this is the maximum space

which can be occupied by a character string. The following example displays the total memory size occupied

by the above union −

#include <stdio.h>

#include <string.h>

union Data {

int i;

float f;

char str[20];

};

int main() {

union Data data;

Dept. of CSE, ACE Page 6

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;

}

When the above code is compiled and executed, it produces the following result −

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member access operator is

coded as a period between the union variable name and the union member that we wish to access. You would

use the keyword union to define variables of union type. The following example shows how to use unions in a

program −

#include <stdio.h>

#include <string.h>

union Data {

int i;

float f;

char str[20];

};

int main() {

union Data data;

data.i = 10;

data.f = 220.5;

strcpy(data.str, "C Programming");

Dept. of CSE, ACE Page 7

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str);

return 0;

POINTERS

Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with pointers,

and other tasks, such as dynamic memory allocation, cannot be performed without using pointers. So it

becomes necessary to learn pointers to become a perfect C programmer. Let's start learning them in simple and

easy steps.

As you know, every variable is a memory location and every memory location has its address defined which

can be accessed using ampersand (&) operator, which denotes an address in memory. Consider the following

example, which prints the address of the variables defined −

#include <stdio.h>

int main () {

int var1;

char var2[10];

printf("Address of var1 variable: %x\n", &var1);

printf("Address of var2 variable: %x\n", &var2);

return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?

Dept. of CSE, ACE Page 8

DATA STRUCTURES AND APPLICATIONS 15CS33

A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory

location. Like any variable or constant, you must declare a pointer before using it to store any variable address.

The general form of a pointer variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the pointer

variable. The asterisk * used to declare a pointer is the same asterisk used for multiplication. However, in this

statement the asterisk is being used to designate a variable as a pointer. Take a look at some of the valid pointer

declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the same, a

long hexadecimal number that represents a memory address. The only difference between pointers of different

data types is the data type of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers very frequently. (a) We define

a pointer variable, (b) assign the address of a variable to a pointer and (c) finally access the value at the address

available in the pointer variable. This is done by using unary operator * that returns the value of the variable

located at the address specified by its operand. The following example makes use of these operations

−

#include <stdio.h>

int main () {

int var = 20;

/* actual variable declaration */

int *ip;

/* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

Dept. of CSE, ACE Page 9

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

1.4. Self Referential Structures

A self referential structure is used to create data structures like linked lists, stacks, etc. Following is an example

of this kind of structure:

struct struct_name

{

datatype datatypename;

struct_name * pointer_name;

};

A self-referential structure is one of the data structures which refer to the pointer to (points) to another structure

of the same type. For example, a linked list is supposed to be a self-referential data structure. The next node of

a node is being pointed, which is of the same struct type. For example,

typedef struct listnode {

void *data;

struct listnode *next;

} linked_list;

Dept. of CSE, ACE Page 10

DATA STRUCTURES AND APPLICATIONS 15CS33

In the above example, the listnode is a self-referential structure – because the *next is of the type struct listnode.

2. Arrays

In C programming, one of the frequently arising problem is to handle similar types of data. For example: If the

user want to store marks of 100 students. This can be done by creating 100 variable individually but, this

process is rather tedious and impracticable. These type of problem can be handled in C programming using

arrays. An array is a sequence of data item of homogeneous value(same type).

Arrays are of two types:

One-dimensional arrays

Multidimensional arrays(will be discussed in next chapter)

Declaration of one-dimensional array

data_type array_name[array_size];

For example:

int age[5];

Here, the name of array is age. The size of array is 5,i.e., there are 5 items(elements) of array age. All element

in an array are of the same type (int, in this case).

Array elements

Size of array defines the number of elements in an array. Each element of array can be accessed and used by

user according to the need of program. For example:

int age[5];

Note that, the first element is numbered 0 and so on.

Here, the size of array age is 5 times the size of int because there are 5 elements.

Suppose, the starting address of age[0] is 2120d and the size of int be 4 bytes. Then, the next address (address of

a[1]) will be 2124d, address of a[2] will be 2128d and so on.

Initialization of one-dimensional array:

Arrays can be initialized at declaration time in this source code as:
Dept. of CSE, ACE Page 11

http://www.programiz.com/c-programming/c-multi-dimensional-arrays

DATA STRUCTURES AND APPLICATIONS 15CS33

int age[5]={2,4,34,3,4};

It is not necessary to define the size of arrays during initialization.

int age[]={2,4,34,3,4};

In this case, the compiler determines the size of array by calculating the number of elements of an array.

Accessing array elements

In C programming, arrays can be accessed and treated like variables in C.

For example:

scanf("%d",&age[2]);

/* statement to insert value in the third element of array age[].

*/ scanf("%d",&age[i]);

/* Statement to insert value in (i+1)th element of array age[]. */

/* Because, the first element of array is age[0], second is age[1], ith is age[i-1] and (i+1)th is age[i].

*/ printf("%d",age[0]);

/* statement to print first element of an array. */

printf("%d",age[i]);

/* statement to print (i+1)th element of an array. */

Example of array in C programming

/* C program to find the sum marks of n students using arrays */

#include <stdio.h>

int main(){

int marks[10],i,n,sum=0;

printf("Enter number of students: ");

Dept. of CSE, ACE Page 12

DATA STRUCTURES AND APPLICATIONS 15CS33

scanf("%d",&n);

for(i=0;i<n;++i){

printf("Enter marks of student%d: ",i+1);

scanf("%d",&marks[i]);

sum+=marks[i];

}

printf("Sum= %d",sum);

return 0;

}

Output

Enter number of students: 3

Enter marks of student1: 12

Enter marks of student2: 31

Enter marks of student3: 2

sum=45

2.1 Operations

Insertion Operation

Insert operation is to insert one or more data elements into an array. Based on the requirement, new element

can be added at the beginning, end or any given index of array.

Here, we see a practical implementation of insertion operation, where we add data at the end of the array −

Algorithm

Let Array is a linear unordered array of MAX elements.

Example

Result

Let LA is a Linear Array (unordered) with N elements and K is a positive integer such that K<=N. Below is

the algorithm where ITEM is inserted into the K
th

position of LA −

Dept. of CSE, ACE Page 13

DATA STRUCTURES AND APPLICATIONS 15CS33

1. Start
2. Set J=N
3. Set N = N+1
4. Repeat steps 5 and 6 while J >= K
5. Set LA[J+1] = LA[J]
6. Set J = J-1
7. Set LA[K] = ITEM
8. Stop

Example

Below is the implementation of the above algorithm −

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int item = 10, k = 3, n = 5;

int i = 0, j = n;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

n = n + 1;

while(j >= k){

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

Dept. of CSE, ACE Page 14

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("The array elements after insertion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

}

When compile and execute, above program produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after insertion :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=10

LA[4]=7

LA[5]=8

For other variations of array insertion operation click here

Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all elements of an array.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Below is the

algorithm to delete an element available at the K
th

position of LA.

1. Start
2. Set J=K
3. Repeat steps 4 and 5 while J < N
4. Set LA[J-1] = LA[J]
5. Set J = J+1
6. Set N = N-1

Dept. of CSE, ACE Page 15

http://www.tutorialspoint.com/data_structures_algorithms/array_insertion_algorithm.htm

DATA STRUCTURES AND APPLICATIONS 15CS33

7. Stop

Example

Below is the implementation of the above algorithm −

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

j = k;

while(j < n){

LA[j-1] = LA[j];

j = j + 1;

}

n = n -1;

printf("The array elements after deletion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

}

Dept. of CSE, ACE Page 16

DATA STRUCTURES AND APPLICATIONS 15CS33

When compile and execute, above program produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

The array elements after deletion :

LA[0]=1

LA[1]=3

LA[2]=7

LA[3]=8

Search Operation

You can perform a search for array element based on its value or its index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Below is the

algorithm to find an element with a value of ITEM using sequential search.

1. Start
2. Set J=0
3. Repeat steps 4 and 5 while J < N
4. IF LA[J] is equal ITEM THEN GOTO STEP 6
5. Set J = J +1
6. PRINT J, ITEM
7. Stop

Example

Below is the implementation of the above algorithm −

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int item = 5, n = 5;

int i = 0, j = 0;

Dept. of CSE, ACE Page 17

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

while(j < n){

if(LA[j] == item){

break;

}

j = j + 1;

}

printf("Found element %d at position %d\n", item, j+1);

}

When compile and execute, above program produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

LA[3]=7

LA[4]=8

Found element 5 at position 3

Update Operation

Update operation refers to updating an existing element from the array at a given index.

Algorithm

Consider LA is a linear array with N elements and K is a positive integer such that K<=N. Below is the

algorithm to update an element available at the K
th

position of LA.

Dept. of CSE, ACE Page 18

DATA STRUCTURES AND APPLICATIONS 15CS33

1. Start
2. Set LA[K-1] = ITEM
3. Stop

Example

Below is the implementation of the above algorithm −

#include <stdio.h>

main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5, item = 10;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

LA[k-1] = item;

printf("The array elements after updation :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

}

When compile and execute, above program produces the following result −

The original array elements are :

LA[0]=1

LA[1]=3

LA[2]=5

Dept. of CSE, ACE Page 19

DATA STRUCTURES AND APPLICATIONS 15CS33

LA[3]=7

LA[4]=8

The array elements after updation :

LA[0]=1

LA[1]=3

LA[2]=10

LA[3]=7

LA[4]=8

2.2 Multidimensional Arrays

C programming language allows multidimensional arrays. Here is the general form of a multidimensional array

declaration −

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional integer array −

int threedim[5][10][4];

Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-dimensional array is, in

essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of size [x][y], you would

write something as follows −

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C identifier. A two-dimensional array

can be considered as a table which will have x number of rows and y number of columns. A two-dimensional

array a, which contains three rows and four columns can be shown as follows −

Thus, every element in the array a is identified by an element name of the forma[i][j], where 'a' is the name

of the array, and 'i' and 'j' are the subscripts that uniquely identify each element in 'a'.

Dept. of CSE, ACE Page 20

DATA STRUCTURES AND APPLICATIONS 15CS33

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row. Following is an array

with 3 rows and each row has 4 columns.

int a[3][4] = {

{0, 1, 2, 3} , /* initializers for row indexed by 0 */

{4, 5, 6, 7} , /* initializers for row indexed by 1 */

{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is equivalent to

the previous example −

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index and column index of

the array. For example −

int val = a[2][3];

The above statement will take the 4th element from the 3rd row of the array. You can verify it in the above

figure. Let us check the following program where we have used a nested loop to handle a two-dimensional

array −

#include <stdio.h>

int main () {

/* an array with 5 rows and 2 columns*/

int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

int i, j;

/* output each array element's value */

for (i = 0; i < 5; i++) {

Dept. of CSE, ACE Page 21

DATA STRUCTURES AND APPLICATIONS 15CS33

for (j = 0; j < 2; j++) {

printf("a[%d][%d] = %d\n", i,j, a[i][j]);

}

}

return 0;

}

When the above code is compiled and executed, it produces the following result −

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

2.3 Applications of Arrays

Arrays are used to implement mathematical vectors and matrices, as well as other kinds of rectangular tables.

Many databases, small and large, consist of (or include) one-dimensional arrays whose elements are records.

Arrays are used to implement other data structures, such as heaps, hash tables, deques, queues, stacks, strings,

and VLists.

One or more large arrays are sometimes used to emulate in-program dynamic memory allocation, particularly

memory pool allocation. Historically, this has sometimes been the only way to allocate "dynamic memory"

portably.

Arrays can be used to determine partial or complete control flow in programs, as a compact alternative to

(otherwise repetitive) multiple IF statements. They are known in this context as control tables and are used in

conjunction with a purpose built interpreter whose control flow is altered according to values contained in the

Dept. of CSE, ACE Page 22

https://en.wikipedia.org/wiki/Coordinate_vector
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Double-ended_queue
https://en.wikipedia.org/wiki/Double-ended_queue
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/VList
https://en.wikipedia.org/wiki/Dynamic_memory_allocation
https://en.wikipedia.org/wiki/Memory_pool
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_table
https://en.wikipedia.org/wiki/Control_flow

DATA STRUCTURES AND APPLICATIONS 15CS33

array. The array may contain subroutine pointers (or relative subroutine numbers that can be acted upon

by SWITCH statements) that direct the path of the execution.

3. Strings

Strings are actually one-dimensional array of characters terminated by a nullcharacter '\0'. Thus a null-

terminated string contains the characters that comprise the string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To hold the null

character at the end of the array, the size of the character array containing the string is one more than the

number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above statement as follows −

char greeting[] = "Hello";

Following is the memory presentation of the above defined string in C/C++ −

Actually, you do not place the null character at the end of a string constant. The C compiler automatically

places the '\0' at the end of the string when it initializes the array. Let us try to print the above mentioned string

−

#include <stdio.h>

int main () {

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

Dept. of CSE, ACE Page 23

https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Switch_statement

DATA STRUCTURES AND APPLICATIONS 15CS33

printf("Greeting message: %s\n", greeting);

return 0;

}

When the above code is compiled and executed, it produces the following result −

Greeting message: Hello

C supports a wide range of functions that manipulate null-terminated strings −

 S.N. Function & Purpose

 1 strcpy(s1, s2);

 Copies string s2 into string s1.

 2 strcat(s1, s2);

 Concatenates string s2 onto the end of string s1.

 3 strlen(s1);

 Returns the length of string s1.

 4 strcmp(s1, s2);

 Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

 5 strchr(s1, ch);

 Returns a pointer to the first occurrence of character ch in string s1.

 6 strstr(s1, s2);

 Returns a pointer to the first occurrence of string s2 in string s1.

 The following example uses some of the above-mentioned functions −

 Dept. of CSE, ACE Page 24

DATA STRUCTURES AND APPLICATIONS 15CS33

#include <stdio.h>

#include <string.h>

int main () {

char str1[12] = "Hello";

char str2[12] = "World";

char str3[12];

int len ;

/* copy str1 into str3 */

strcpy(str3, str1);

printf("strcpy(str3, str1) : %s\n", str3);

/* concatenates str1 and str2 */

strcat(str1, str2);

printf("strcat(str1, str2): %s\n", str1);

/* total lenghth of str1 after concatenation */

len = strlen(str1);

printf("strlen(str1) : %d\n", len);

return 0;

}

When the above code is compiled and executed, it produces the following result −

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

Dept. of CSE, ACE Page 25

DATA STRUCTURES AND APPLICATIONS 15CS33

3.1. String manipulation Applications

Strings are often needed to be manipulated by programmer according to the need of a problem. All string

manipulation can be done manually by the programmer but, this makes programming complex and large. To

solve this, the C supports a large number of string handling functions.

There are numerous functions defined in "string.h" header file. Few commonly used string handling functions

are discussed below:

Function Work of Function

strlen() Calculates the length of string

strcpy() Copies a string to another string

strcat() Concatenates(joins) two strings

strcmp() Compares two string

strlwr() Converts string to lowercase

strupr() Converts string to uppercase

Strings handling functions are defined under "string.h" header file, i.e, you have to include the code below to

run string handling functions.

4. Dynamic Memory Management Functions

The exact size of array is unknown untill the compile time,i.e., time when a compier compiles code written in a

programming language into a executable form. The size of array you have declared initially can be sometimes

insufficient and sometimes more than required. Dynamic memory allocation allows a program to obtain more

memory space, while running or to release space when no space is required.

Although, C language inherently does not has any technique to allocated memory dynamically, there are 4

library functions under "stdlib.h" for dynamic memory allocation.

Function Use of Function

Dept. of CSE, ACE Page 26

http://www.programiz.com/c-programming/library-function/strlen
http://www.programiz.com/c-programming/library-function/strcpy
http://www.programiz.com/c-programming/library-function/strcat
http://www.programiz.com/c-programming/library-function/strcmp
http://www.programiz.com/c-programming/library-function/strlwr
http://www.programiz.com/c-programming/library-function/strupr

 DATA STRUCTURES AND APPLICATIONS 15CS33

Function

Use of Function

 malloc() Allocates requested size of bytes and returns a pointer first byte of allocated space

calloc()

Allocates space for an array elements, initializes to zero and then returns a pointer to

memory

 free() dellocate the previously allocated space

 realloc() Change the size of previously allocated space

malloc()

The name malloc stands for "memory allocation". The function malloc() reserves a block of memory of

specified size and return a pointer of type void which can be casted into pointer of any form.

Syntax of malloc()

ptr=(cast-type*)malloc(byte-size)

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory with size of byte

size. If the space is insufficient, allocation fails and returns NULL pointer.

ptr=(int*)malloc(100*sizeof(int));

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes respectively and the pointer

points to the address of first byte of memory.

calloc()

The name calloc stands for "contiguous allocation". The only difference between malloc() and calloc() is that,

malloc() allocates single block of memory whereas calloc() allocates multiple blocks of memory each of same

size and sets all bytes to zero.

Syntax of calloc()

ptr=(cast-type*)calloc(n,element-size);
Dept. of CSE, ACE Page 27

http://www.programiz.com/c-programming/c-dynamic-memory-allocation#malloc
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#calloc
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#free
http://www.programiz.com/c-programming/c-dynamic-memory-allocation#realloc

DATA STRUCTURES AND APPLICATIONS 15CS33

This statement will allocate contiguous space in memory for an array of n elements. For example:

ptr=(float*)calloc(25,sizeof(float));

This statement allocates contiguous space in memory for an array of 25 elements each of size of float, i.e, 4

bytes.

free()

Dynamically allocated memory with either calloc() or malloc() does not get return on its own. The programmer

must use free() explicitly to release space.

syntax of free()

free(ptr);

This statement cause the space in memory pointer by ptr to be deallocated.

Dept. of CSE, ACE Page 28

