
[image: C:\Users\Santhosh\Desktop\SET-logo.png]
Department of Computer Science and Engineering 
	USN
	
	
	
	
	
	
	
	
	
	




THIRDSEMESTER TEST -III
	Subject: Data Structures Using C
	Session: July - Dec 2019

	Subject Code:18CSI301
	Duration: 90 Minutes

	Date of Examination:27/ 11/2019
	Max Marks: 03 X 15 = 45


Note: 
· Answer 3 full questions and each full question carries 15 Marks.
· Provide neat diagrams wherever applicable.

	Q.No
	Question
	Marks
	CO’s
	Bloom’s
Level

	1a
	Define a) binary tree b) compete binary tree c) extended binary tree with suitable examples.
[image: ]
[image: ]

[image: ]
	05

01














02














02






	CO3
	L1

	1b
	Write C functions to perform following operations on a binary search tree: a) Creating BST b) To count the leaf nodes

   #include <stdio.h>
 
struct node {
    int data;
    struct node *left;
    struct node *right;
};
 
struct node* getNewNode(int data) {
  /* dynamically allocate memory for a new node */
  struct node* newNode = (struct node*)malloc(sizeof(struct node));
  
  /* populate data in new Node */
  newNode->data = data;
  newNode->left = NULL;
  newNode->right = NULL;
   
  return newNode;
}
 struct node* generateBTree(){
    // Root Node
    struct node* root =  getNewNode(1);
    // Level 2 nodes 
    root->left = getNewNode(2);
    root->right = getNewNode(3);
    // Level 3 nodes
    root->left->left = getNewNode(4);
    root->left->right = getNewNode(5);
    root->right->left = getNewNode(6);
    root->right->right = getNewNode(7);

    // Level 4 nodes
    root->left->left->left = getNewNode(8);
     
    return root;
 
}
 Note: any relevent program also be considered.
/*
 Returns the count of leaf nodes in a binary tree   
*/
int count Leaf Node (struct node *root)
{
    /* Empty(NULL) Tree */
    if(root == NULL)
        return 0;
    /* Check for leaf node */
    if(root->left == NULL && root->right == NULL)
        return 1;
    /* For internal nodes, return the sum of 
    leaf nodes in left and right sub-tree */
    return countLeafNode(root->left) + countLeafNode(root->right);
}
 
int main() {
    struct node *root = generateBTree();    
     
    /* Print number of lead nodes */
    printf("Number of leaf Node : %d", countLeafNode(root));
     
    getchar();
    return 0; 
}

	10
	CO3
	L2

	OR

	2a
	What is a graph? Explain the properties of graphs.

A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as vertices, and the links that connect the vertices are called edges. 
Properties of graphs are :
1.Distance between two vertices
2.Eccentricity of a vertex
3.Radius of connected Graph
4.Diameter of a Graph
5.Central point

	05

03



02
	CO3
	L2

	2b
	Write breadth first traversal algorithm. Perform the BFS traversal for the given graph.

[image: ]

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
Note: alternative methods are also considered.
	10














02







02


















02




02















02




	CO3
	L2

	
	
	
	
	

	3a
	Discuss Kruskal’s algorithm. Find the minimum spanning tree for the given graph using Kruskal’s algorithm.

[image: https://www.geeksforgeeks.org/wp-content/uploads/Fig-11.jpg]


The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8 edges.


                    

[image: fig8new.jpeg (712×328)]
Since the number of edges included equals (V – 1), the algorithm stops here.

	12











06












06






	CO4
	L3

	3b
	List any two differences between graphs and trees.

[image: ]
	3
	CO3
	L3

	OR

	4a
	Describe the different modes of opening a file with an example.


A file can be opened in different modes. Below are some of the most commonly used modes for opening or creating a file.

r : opens a text file in reading mode.
w : opens or creates a text file in writing mode.
a : opens a text file in append mode.
r+ : opens a text file in both reading and writing mode. The file must exist.
w+ : opens a text file in both reading and writing mode. If the file exists, it's truncated first before overwriting. Any old data will be lost. If the file doesn't exist, a new file will be created.
a+ : opens a text file in both reading and appending mode. New data is appended at the end of the file and does not overwrite the existing content.
rb : opens a binary file in reading mode.
wb : opens or creates a binary file in writing mode.
ab : opens a binary file in append mode.
rb+ : opens a binary file in both reading and writing mode, and the original content is overwritten if the file exists.
wb+: opens a binary file in both reading and writing mode and works similar to the w+ mode for binary files. The file content is deleted first and then new content is added.
ab+: opens a binary file in both reading and appending mode and appends data at the end of the file without overwriting the existing content.

	7




	CO3
	L3

	4b
	Explain the memory representation of graphs with suitable example.

[image: ]
[image: ]
[image: ]
	8




















04
















04
	CO3
	L3

	

	
	
	
	

	5a
	Discuss DFS algorithm. Perform the DFS traversal for the given graph.
[image: Image result for bfs traversal graph example]








	09










04






















05
	CO4
	L3

	5b
	Suppose friendly airways has 9 daily flights, as follows:
103 Atlanta to Houston,203 Boston to Denver,305 Chicago to Miami
106 Houston to Atlanta,204 Denver to Boston,308 Miami to Boston
201 Boston to Chicag,301 Denver to Reno,402 Reno to Chicago,502 hostan to bostan
Based on the above data solve the following
a. Is there any direct flight from Reno to Miami
b. What is the min no of stops path from Reno to Boston
Draw Graph Using DFS or BFS.






	06





















03













03


















	CO4
	L4

	OR

	6a
	Name the data structure used to traverse the graph with BFS and found the shortest path from starting vertex to final vertex of the following graph, And list out the applications of BFS.




[image: C:\Users\Lenovo\Desktop\aa.jpg]

	09


03











06

	CO4
	L3

	6b
	Discuss the applications of trees and graphs.

[image: ]
 Applications of Trees
 1.Binary Search Trees(BSTs) are used to quickly check whether an         element is present in a set or not.
 2.Heap is a kind of tree that is used for heap sort.
 3.A modified version of tree called Tries is used in modern routers   to store routing information.

	06


02











02



[bookmark: _GoBack]02

	CO3
	L3



Course Outcomes:
	CO-1 
	Understand the various types of data structures, operations and algorithms

	CO-2 
	Analyze the various algorithms used in linear and non-linear data structures.

	CO-3 
	Design the algorithm for stack, queues, list, trees and graphs.

	CO-4 
	Apply appropriate data structures for solving computing problems.



	L1 
	L2
	L3
	L4
	L5
	L6

	Remembering
	Understanding
	Applying
	Analyzing 
	Evaluating
	Creating



	
CO/PO: Mapping

	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

	Course Outcome
(COs)
	Program Outcome (POs)

	
	PO-1 
	PO-2 
	PO-3 
	PO-4 
	PO-5 
	PO-6 
	PO-7 
	PO-8 
	PO-9 
	PO-10 
	PO-11 
	PO-12 

	CO-1 
	H
	H
	H
	H
	M
	L
	M
	M
	M
	L
	H
	H

	CO-2 
	H
	H
	L
	H
	M
	L
	M
	M
	M
	L
	H
	H

	CO-3 
	H
	H
	M
	H
	H
	L
	M
	M
	M
	L
	H
	H

	CO-4 
	M
	M
	H
	M
	M
	L
	M
	M
	M
	L
	M
	H




*****
Page 12 of 12

image2.jfif
Introduction To Binary Trees

A binary tree is a hierarchical data structure in
which each node has at most two children
generally referred as left child and right child.

Each node contains three components:
1. Pointer to left subtree

2. Pointer to right subtree

3. Data element

The topmost node in the tree is called the root.
An empty tree is represented by NULL pointer.

A representation of binary tree is shown:

LEFT DATA RIGHT

X| F |X





image3.jpeg
« Complete binary tree: It is a binary tree in
which every level, except possibly the last,
is completely filled, and all nodes are as

far left as possible.

© The number of internal nodes in a
complete binary tree of n nodes is
floor(n/2).




image4.jpeg
Extended Binary Tree

Extended binary tree is a type of binary tree
in which all the null sub tree of the original
tree are replaced with special nodes called
external nodes whereas other nodes are
called internal nodes

Here the circles represent the internal
nodes and the boxes represent the external
nodes.




image5.png




image6.jpeg
55@4 vt L -AJo (2 )dl“,L P
Lo R) 2 Qmar‘ .&ﬁ e G

"‘ S v
> Bodefe Npr o .=

e

[o]eTx





image7.jpeg
P wel - ple a.'\-lcp) edads one NeR ekt
sl > fwerar % No Vet s
5 Odete B Huew e Gwese

@ ’%

H—e— [ Te Il

g Hin met A BT ke dn e
velled (e f)

S el el vsifed vefied z' Beke
- (_‘;,l.,w Cuoeve.





image8.jpeg
UL GO VI ) ql(u'l\ il “l

o
uaceg :
D Wene @ Ao Venked .
S el Wyt A e Anene

(@3

() G
s B
¢ Y
L Y =





image9.jpeg
gep vl e 495 ) lack e Mol viswel
S i e veea)
S Dbl \f( ;Q .

) ' @> G,
> .
e s

8%~
it | | i . e
R

S e D wNe ey
<!

S Pdf— Tt Lo e Roenc
e—®

o . 4

:-h-% O o= c,w‘)i‘:& 3 .SQ-P (-39 fbmﬂ_





image10.jpeg
#4{




image11.jpeg




image12.png
After sortin
Weight

Dest

Src

L N N

N® o NR NN oM

daNYTTONN®© 0

10
11
14





image13.jpeg




image14.jfif
Path

Loops

Root Node

Parent Child

relationship

Trees

Tree is special form
of graph i.e.
minimally
connected graph
and having only one
path between any

two vertices.

Tree is a special case
of graph having no
loops, no circuits

and no self-loops.

In tree there is
exactly one root node
and every child have

only one parent.

In trees, there is
parent child
relationship so flow
can be there with
direction top to

bottom or vice versa.

Graphs

In graph there
can be more
than one path
i.e. graph can
have uni-
directional or bi-
directional paths
(edges) between

nodes

Graph can have
loops, circuits as
well as can have

self-loops.

In graph there is
no such concept

of root node.

In Graph there is
no such parent
child

relationship.





image15.jfif
Following two are the most commonly used
representations of a graph.

1. Adjacency Matrix

2. Adjacency List

There are other representations also like,
Incidence Matrix and Incidence List. The
choice of the graph representation is
situation specific. It totally depends on the
type of operations to be performed and
ease of use.




image16.jfif
Adjacency Matrix:

Adjacency Matrix is a 2D array of size VxV
where V is the number of vertices in a
graph. Let the 2D array be adj[1[], a slot
adj[i](j] = 1indicates that there is an edge
from vertex i to vertex j. Adjacency matrix
for undirected graph is always symmetric.
Adjacency Matrix is also used to represent
weighted graphs. If adj[i][j] = w, then there
is an edge from vertex i to vertex j with
weight w.

The adjacency matrix for the above
example graph is:





image17.jfif
Adjacency List:

An array of lists is used. Size of the array is
equal to the number of vertices. Let the
array be array[]. An entry array(i]
represents the list of vertices adjacent to
the ith vertex. This representation can also
be used to represent a weighted graph. The
weights of edges can be represented as lists
of pairs. Following is adjacency list
representation of the above graph.

w n -

IS





image18.jpeg




image19.png





image20.png
':;1.{ o ‘M@L Drden —>

W e ©

bt






image21.png





image22.png





image23.jpeg
245

S P
200 25
&) ®
~ Tetelca{ - 2yr 300 + 2001245 + 2o

[E5m 14“‘





image24.jfif
Applications of Graph Data Structure

A graph is anon-linear data structure,
which consists of vertices(or nodes)
connected by edges(or arcs) where edges
may be directed or undirected.

Edge

Vertices

¢ In Computer science graphs are used to
represent the flow of computation.

» Google maps uses graphs for building
transportation systems, where
intersection of two(or more) roads are
considered to be a vertex and the road
connecting two vertices is considered to
be an edge, thus their navigation system
is based on the algorithm to calculate the
shortest path between two vertices.




image1.png
SCHOOL OF
ENGINEERING
AND TECHNOLOGY

I DEEMED-TO-BE UNIVERSITY




