

[image: C:\Users\Santhosh\Desktop\SET-logo.png]
Department of Computer Science and Engineering
	USN
	
	
	
	
	
	
	
	
	
	

THIRD SEMESTER TEST -I
	Subject: Data Structures Using C
	Session: July - Dec 2019

	Subject Code:18CSI301
	Duration: 90 Minutes

	Date of Examination: /09/2019
	Max Marks: 03 X 15 = 45

Note:
· Answer 3 full questions and each full question carries 15 Marks.
· Provide neat diagrams wherever applicable.

	Q.No
	Question
	Marks
	CO’s
	Bloom’s
Level

	1a
	Illustrate why data structures is used. Explain the classification of data structure.

Illustrate why data structures is used

A data structure is a particular way of storing and organizing data in a computer’s memory so that it can be used efficiently. Data may be organized in many different ways; the logical or mathematical model of a particular organization of data is called a data structure. The choice of a particular data model depends on the two considerations first; it must be rich enough in structure to mirror the actual relationships of the data in the real world. On the other hand, the structure should be simple enough that one can effectively process the data whenever necessary.
· Data structure is important because it is used in almost every program or software system.
· It helps to write efficient code, structures the code and solve problems.
· Data can be maintained more easily by encouraging a better design or implementation.
· Data structure is just a container for the data that is used to store, manipulate and arrange.
It can be processed by algorithms

Explain the classification of data structure.

Classification (Primitive and Non-Primitive)

Primitive Data Type
· Primitive data types are the data types available in most of the programming languages.
· These data types are used to represent single value.
· It is a basic data type available in most of the programming language.
	Data type
	Description

	Integer
	Used to represent a number without decimal point.

	Float
	Used to represent a number with decimal point.

	Character
	Used to represent single character.

	Boolean
	Used to represent logical values either true or false.

[image: types of data structure]
Non-Primitive Data Type
· Data type derived from primary data types are known as Non-Primitive data types.
· Non-Primitive data types are used to store group of values.

	8

2

6

3

3

	CO1
	L1

	1c
	Write a C program with an appropriate structure definition and variable declaration to read and display information about an employee using nested structures. Consider the following fields: Ename, Eid, DOJ(Date, Month, Year) and Salary(Basic, DA, HRA).

	7
	CO1
	L3

	OR

	2a
	With suitable examples, discuss the different dynamic memory allocation functions used in C.

Dynamic memory allocation:
It is important to develop algorithm based applications like stacks and queues.

Static Memory or fixed size:
· Declaring a primative variable, int a;
· Memory allocated at runtime only
· We call it as static means memory size is fixed
Ex: int arr(100)
Here we cannot store more than 100, so it is called fixed size. These are called static memory allocation.

Dynamic memory allocation:
· Size of the array may be increased or decreased based on the elements storing and deleting.
· To allocate the memory dynamically predefined function is used [Stdlib.h]library
· Stdlib.h provides 4 important functions to allocate or deallocate functions.
· Pointers conceot is used
1. Malloc: used to allocate the memory to structures
2. Calloc : used to allocate the memory to arrays
3. Realloc : used to increase or decrease size of the array
4. Free: used to delete the memory

1. Malloc: used to allocate the memory to structures.
Void ptr = malloc(Size_type size);
 Void ptr: return type= generic pointer
Size_t: argument= unsigned= positive integer value
Size: variable
· Whenever we allocate memory we should pass only positive integer value
· On success : it returns base address of the memory block
· Onfailure: it returns the null pointer

 Memory allocation using pointers

Struct emp
{
Int eno
Char ename[20]
Float esal;
};
Void ptr=(struct emp*)malloc(size of(struct epm));
If(ptr==null)
{
Printf(“out of memory error\n”);
}
Else
{
Printf(“enter employee details”);
Scanf(“%d,%s,%p; ptreno; ptr ename;ptresal”);
}

Calloc()
· Memory allocation to array
· Void *calloc(size_t n, size_t size) [‘n’ is array size, size:size of the element in array]
· On success it returns address of the memory block
· On failure ; it returns null pointer
· Using calloc function we can allocate memory dynamically
· We cannot increase or decrease the size of the array
· So calloc is failed
· Calloc taing the realloc function to increase or decrease the size of the array

Realloc();
Increase or decrease the size of the array
Void* realloc(void *ptr, size_t size)
Generic pointer it can access any array size

	8

2
2
2
2

	CO1
	L1

	2b
	Write C functions to perform the following string operations using pointers:
a) To concatenate two strings: (S1=”Data”; S2=”Structures”)
b) To reverse a string: S2
	7
	CO1
	L3

	
	
	
	
	

	3a
	Discuss the disadvantages of linear queue. Illustrate the implementation of circular queue using C programming.

Discuss the disadvantages of linear queue.
Let, assume after insertion operations rear is shifted to last position in queue. It means, now queue is full. Now if a new element is inserted then overflow condition will occur. Now, if we delete some elements from queue then front will be increased by 1.
. Illustrate the implementation of circular queue using C programming.

· We know that when queue is implemented as an array, insertion is not possible after rear reaches the last position of array.
· There may be vacant position in the array but they can’t be utilized.
· To overcome limitation we use the concept of circular queue.
· We can think of array to be logically circular, so that the two ends of the array wrap upto make a circle.
[image: C:\Users\My\Downloads\WhatsApp Image 2019-09-02 at 9.13.17 AM.jpeg]

· The insertion and deletion operation in a circular queue can be performed in a manner similar to that of queue but we have to take care of two things.
· If value of rear is MAX-1, then instead of incrementing rear we will make it zero and then perform insertion.
· Similarly when the value of front becomes MAX-1, it will not be incremented but will be reset to zero.
Let us see the various operations on a circular queue.

[image: C:\Users\My\Downloads\New Doc 2019-09-11 09.35.43.jpg]

[image: C:\Users\My\Downloads\New Doc 2019-09-11 09.35.43_2.jpg]
}
Printf(“queue elements :/n”);
I=front;
If(front<=rear)
{
While(i=<=rear)
Printf(“%d”, cqueue_arr[i++]);
}
Else
{
While(i<=MAX-1)
Printf(“%d”, cqueue_arr[i++]);
I=0;
While()i<=rear)
Printf(“%d”, cqueue_arr[i++]);
}
Printf(“/n”);
}
/*end of display*/

	10

2

8

	CO3
	L3

	3b
	Mention the applications of stack.

Stack is used to check the proper opening and closing of parenthesis.
Stack is used to reverse a string. We push the characters of string one by one into stack and then pop character from stack. Stack is used to keep information about the active functions or subroutines.
 [image: C:\Users\My\Desktop\stack.png]

	5
	CO2
	L2

	OR

	4a
	Illustrate the concept of Tower of Hanoi for n=1, n= 2, n=3 where ‘n’ indicates the no of disks. Write program Tower of Hanoi using recursion.

Illustrate the concept of Tower of Hanoi for n=1, n= 2, n=3 where ‘n’ indicates the no of disks.

· The problem of tower of Hanoi is to move Disks from one pillar to another pillar using a temporary pillar.
· We have a source pillar A which has a finate number of disks,
· And these disks are placed on it in a decreasing order
· i.e largest data is at the bottom and the smallest disk is at the top
· now we want to place all these disks on destination pillar C in the same order
· We can use a temporary pillar B to place the disk temporarly when ever required.
· We can move only disk from one pillar to another at a time
· Larger disk cannot be placed on smaller disk.

· Suppose the number of disks on pillar A is N.
· First we will solve the problem for n=1, n=2, n=3 and we will develop a general procedure for the solution.
· Here A is the source pillar
· C is the destination pillar
· B is the temporary pillar
[image:]

[image:]

· These were the solutions for n=1, n=2,n=3.from these solutions we can observe that first we move n-1 disks from source pillar (A) to temporary pillar B.
· And then move the largest nth disk to th destination pillar (c). so the general solution for N disks can be written as
1. Move upper n-1 disks from A to B using C as the temporary pillar.
2. Move nth disk from A to C.
3. Move n-1 disks from BtoC using A as the temporary pillar.

//Program to solve tower of Hanoi using recursion.
include <stdio.h>
Void tofh(int ndisk,chr source, char temp, char dest);
Main
{
Char source =”A”, temp=”B”, dest=”C”;
Int ndisk;
Printf(“enter the number of disk:”);
Scanf(“&d”, &ndisk);
Printf(“sequence is :/n”);
Tofh(ndisk,source,temp,dest);
}
Void tofh(int ndisk, char source, char temp, char dest)
{
If(ndisk==1)
{
Printf(“move disk %d from %c%c/n, ndisk,source,dest”);
Return;
}
tofh(ndisk-1, source, dest, temp);
printf(“move disk &d from %c%c/n, ndisk, source, dest”);
tofh(ndisk-1,temp,source,dest);
}/*end of tofh*/+

	9

5

4

	CO3
	L3

	4b
	Explain in detail the pattern matching algorithms. Discuss the brute force pattern matching algorithm. Also solve it for the following pattern Pattern=”CAT” ; TEXT=”ABABNACATM”

Explain in detail the pattern matching algorithms.
PATTERN MATCHING ALGORTHIM:
Pattern matching algorithm is an act of checking a given sequence of token for the presence of the constituents of some pattern.
· Strings are sequence of characters
· Strings are more often used than numbers
· Some of important operations on the string are searching a word, find and replace operations etc.
· String matching is most important problem
· String matching consists of searching a query string or pattern.
EX: “P” in a given text “T”
· Generally size of the pattern to be searched is smaller than the given text
· There are several applications for the string matching some of these are
Text editor, search engine’s, biological applications
· Since matching algorithms are used extensively, these should be efficient in terms of time and space.
· Let P[1..M] is the pattern to be searched and its size is “M”
· Assume that pattern occurs in “T” at position the output of the matching algorithm will be the integer I {where 1<=i<=n-m}if there are multiple occurrence of the pattern in the text, then some times.
Let pattern “P”=CAT
TEXT=ABABNACATM
· Then there is a match with the shift in the text “T”
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	A
	B
	A
	B
	N
	A
	C
	A
	T
	M

PATTERN P= CAT
BRUTE FORCE STRING MATCHING ALGORTHIM
this is a simple and one in which we can compare a given pattern “p” with each of the surroundings of the text “T”, moving from left to right until match is found.
· Let Si is the substring of “T” beginning at the ith postion and where length is same as pattern “P”.
· We compaer “P” character by character with the first substring s1
· If all the corresponding characters are same then the pattern “p” appears in ‘T’ at shift”1”
· If the same of the character of s1 not matched with the corresponding characters of “p”,then we try for next substring s2
· This procedure continues till the input text exhausted
· In this algorithm we have to compare “p” with n-m+1 substring of T

	6

3

3
	CO2
	L3

	

	
	
	
	

	5a
	Consider an array of elements arr [6]={23,78,45,8,32,56}, sort the following elements in ascending order using insertion sort. Write pseudo code / algorithm.

	8
	CO2
	L3

	5b
	With an algorithm evaluate the polish notation expression using stack.
a) 6 3 2 – 5 * + 1 / 7 +
b) 5 3 2 + 8 * +
	7
	CO3
	L3

	OR

	6a
	Consider an array of elements {247,321,515,227,642,413,109,248,754,930} Arrange the given numbers using radix sort..
	8
	CO2
	L3

	6b
	Represent the following sparse matrix using arrays and linked list. Also find its transpose.
 15 0 0 22 0 -5
 0 10 2 0 0 0
 0 0 0 -4 0 0
 0 0 0 0 0 0
 91 0 0 0 0 0
 0 0 28 0 0 0

	7
	CO2
	L3

Course Outcomes:
	CO-1
	Understand the various types of data structures, operations and algorithms

	CO-2
	Analyze the various algorithms used in linear and non-linear data structures.

	CO-3
	Design the algorithm for stack, queues, list, trees and graphs.

	CO-4
	Apply appropriate data structures for solving computing problems.

	L1
	L2
	L3
	L4
	L5
	L6

	Remembering
	Understanding
	Applying
	Analyzing
	Evaluating
	Creating

	
CO/PO: Mapping

	(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

	Course Outcome
(COs)
	Program Outcome (POs)

	
	PO-1
	PO-2
	PO-3
	PO-4
	PO-5
	PO-6
	PO-7
	PO-8
	PO-9
	PO-10
	PO-11
	PO-12

	CO-1
	H
	H
	H
	H
	M
	L
	M
	M
	M
	L
	H
	H

	CO-2
	H
	H
	L
	H
	M
	L
	M
	M
	M
	L
	H
	H

	CO-3
	H
	H
	M
	H
	H
	L
	M
	M
	M
	L
	H
	H

	CO-4
	M
	M
	H
	M
	M
	L
	M
	M
	M
	L
	M
	H

Page 15 of 15

image3.jpeg
>
[front=3 rear=7 \

-.-mmmmm
01 17 (2 B3 14 (5 6] (7]

Now after the (n-1)
position,

front =3, rear = 0

B @
Figure 4.9

ol ¥ e

image4.jpeg
if(fron ==rear)
{ .
front = rear = -1;

}

/*P4.6 Program of circular queue*/
#include<stdio.h>
#include<stdlib.h>
#define MAX 10

int cqueue_arr [MAX];
int front = -1;

int rear = -1;

void display();

void insert(item);
int del();

int peek();

int isEmpty();

int isFull();

main()

{
int choice, item;

while (1)

(.
printf("1l.Insert\n");

. printf("2.Delete\n");
printf("3.Peek\n");
printf("4.Display\n");
printf("5.Quit\n");
princf ("Enter your choice : ");
scanf ("%d4d", &choice) ;
switch(choice)

{

case 1
- printf("Input the element for insertion : =);

scanf ("%d",&item);
R insert(item);
break;

_case 2 . :)
. printf(“Element -deleted is : %d\n",del());

_break;

case 3:) '
printf("Element at the front is : %d\n", peek());

~ ' break;
case 4:
4 display();
break;
‘case 5: mt
oexit(1); A gormcoaleg e i riginy Loy M
default: il s o R S
prlntf(Wrong ch01ce\n),
}/*End of swztch*/ R
}/*End of while */

}/*End of main()*/:

; v01d insert (int item)
",': { .

‘if(isFull())
{ ; B e
printf ("Queue-Overflow\

image5.jpeg
return;

P ~jf(front==-1)
’ front = 0;

: 1f (rear=—MAX 1) /*rear is at last
e rear = 0;
- else

position of queue*/

rear = rear+l;
cqueue_ arr(rear] = item ;
vgnd Of insert () */

)/

e el

;{ _ int item;

0 if (isEmpty ()) : .

e‘ (.
g printf ("Queue Underflow\n");
exit(1l); -

jtem = cqueue_arr[front]; '
if (front= rear) /*queue has only one element*/

{

front = -1;
rear = -1;

}
else if (front==MAX-1)
front = 0;

I else
. front = front+l;
return item;

}/*End of del() */
int isEmpty()

1f(fron ==—1)
return 1l;

else .
return 0;

}/*End of isEmpty()*/

int isFull()

3 | (front;érear+1))

if((front==0 && rear==MAx -1)
return 1; T
else . S 5
return 0; R o
}/*End of 1sFull()*/

?nt PEEk()

lf(lsme;n:y()) |

I e _
s prlntf(Queue Underflow\n")
ex1t(1),

-3} -
] return cqueue arr
1/*Eng of peek()*/

3 ‘('“d» display()

[front];

”.1nt i; :
1f(1SErnptym e
¢ : o o

printf(* Queue'is empty\1

‘return;

image6.png
]
ﬁm
_____:

Push

image7.png
g

for ! u Il " :

Initial position ASC
Move the disk from pillar A to pillar C. (AC)

gy (IR TR T}

Initial position

(i) Move disk 1 from pll]ar AtoB (ASB)
(i) Move disk 2 from A to C (ASC)
(iii) Move disk 1 from pillar Bto C - (B->C)

image8.png
Forn=3

Initial position
A B C A B C A B C A B C
ASC : BA B¢ o
;:?)T;’Ve disk 1 from pillar A to C (A0
i) N;)ve disk 2 from pillar Ato B (A2B)
(iv)M‘)"e disk 1 from pillar C to B (C>B)
iy M:VVc disk 3 from pillar Ato C . (A2C)
() Move disk 1 from pillar Bto A~ (B>A)
i) g ¢ disk 2 from pillar B to C (B0
" Move disk 1 frompillar AtoC, (A0

image1.png
SCHOOL OF
ENGINEERING
AND TECHNOLOGY

I DEEMED-TO-BE UNIVERSITY

image2.jpeg
Types of Data Structure.

f——r—

Primitive Data Non-Priniive Data
Sicure Structure
i L
b k= . & 3
Iteger Float Characer Boolean Linoar Data Non-Linear
Stucure Data Strcture

o

Arays LinkedList Siack Quete Trees Graphs

Fig. Types of Data Structure

