
Queue

A queue is a linear list in which elements can be added at one end and

elements can be removed only at other end. So the information in this list is

processed in same order as it was received .Hence queue is called a FIFO

structure.(First In First Out).

Ex: people waiting in a line at a bus stop.

The first person in queue is the first person to take bus. Whenever new

person comes he joins at end of the queue.

Implementation of Queue

Queue can be implementing by two ways:

• Array implementation

• Linked list implementation

Array Representation of Queue

In Array implementation FRONT pointer initialized with 0 and REAR

initialized with - 1.Consider the implementation: - If there are 5 items in a

Queue,

Note: In case of empty queue, front is one position ahead of rear : FRONT

= REAR + 1;.This is the queue underflow condition. The queue is full when

REAR =N-1.This is the queue overflow condition.

The figure above ,the last case after insertion of three elements, the rear

points to 4, and hence satisfies the overflow condition although the queue still

has space to accommodate one more element .This problem can be overcome

by making the rear pointer reset to the starting position in the queue and hence

view the array as a circular representation. This is called a circular queue.

Implementation of queue using arrays

include <conio.h>

define MAX 5

int Q[MAX];

int front=0, rear=-1;

void insertQ() //Enqueue

{

int data;

if(rear == MAX-1)

{ printf("\n Linear Queue is full");

return; }

printf("\n Enter data: ");

scanf("%d", &data);

Q[++rear] = data;

printf("\n Data Inserted in the Queue ");

}

void deleteQ() // dequeue

{ if(front>rear) //OR front=rear +1

{

printf("\n\n Queue is Empty.."); return;

}

printf("\n Deleted element from Queue is %d", Q[front]);

front++;

}

void displayQ()

{ int i;

if(front >rear)

{ printf("\n\n\t Queue is Empty"); return; }

printf("\n Elements in Queue are: ");

for(i = front; i < rear; i++)

printf("%d\t", Q[i]);

}

 As in stacks, a queue can also be implemented using Arrays, Linked-lists,

Pointers and Structures. For the sake of simplicity, we shall implement queues

using one-dimensional array.

 Basic Operations

 Queue operations may involve initializing or defining the queue, utilizing

it, and then completely erasing it from the memory. Here we shall try to

understand the basic operations associated with queues −

• enqueue() − add (store) an item to the queue.

• dequeue() − remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation

efficient. These are −

• peek() − Gets the element at the front of the queue without removing it.

• isfull() − Checks if the queue is full.

• isempty() − Checks if the queue is empty.

 In queue, we always dequeue (or access) data, pointed by front pointer

and while enqueing (or storing) data in the queue we take help of rear pointer.

Let's first learn about supportive functions of a queue

 Peek()

This function helps to see the data at the front of the queue. The algorithm of

peek() function is as follows −

Algorithm

begin procedure peek

return queue[front]

end procedure

Implementation of peek() function in C programming language

int peek()

{

 return queue[front];

}

isfull()

 As we are using single dimension array to implement queue, we just

check for the rear pointer to reach at MAXSIZE to determine that the queue is

full. In case we maintain the queue in a circular linked-list, the algorithm will

differ.

Algorithm

begin procedure isfull

 if rear equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language

bool isfull()

{

 if(rear == MAXSIZE - 1)

 return true;

 else

 return false;

}

isempty()

Algorithm

begin procedure isempty

 if front is less than MIN OR front is greater than rear

 return true

 else

 return false

 endif

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet

initialized, hence empty.

C programming code

bool isempty()

{

 if(front < 0 || front > rear)

 return true;

 else

return false;

}

Enqueue Operation

 Queues maintain two data pointers, front and rear. Therefore, its

operations are comparatively difficult to implement than that of stacks.

The following steps should be taken to enqueue (insert) data into a queue,

• Step 1 − Check if the queue is full.

• Step 2 − If the queue is full, produce overflow error and exit.

• Step 3 − If the queue is not full, increment rear pointer to point the next

empty space.

• Step 4 − Add data element to the queue location, where the rear is pointing.

• Step 5 − return success.

Algorithm for enqueue operation

procedure enqueue(data)

 if queue is full

 return overflow

 endif

rear ← rear + 1

 queue[rear] ← data

 return true

end procedure

Implementation of enqueue() in C programming language

int enqueue(int data)

 if(isfull())

 return 0;

 rear = rear + 1;

 queue[rear] = data;

 return 1;

end procedure

Dequeue Operation

Accessing data from the queue is a process of two tasks − access the data

where front is pointing and remove the data after access. The following steps are

taken to perform dequeue operation −

• Step 1 − Check if the queue is empty.

• Step 2 − If the queue is empty, produce underflow error and exit.

• Step 3 − If the queue is not empty, access the data where front is pointing.

• Step 4 − Increment front pointer to point to the next available data element.

• Step 5 − Return success.

Algorithm for dequeue operation

procedure dequeue

 if queue is empty

 return underflow

 end if

 data = queue[front]

 front ← front + 1

 return true

end procedure

Implementation of dequeue() in C programming language

int dequeue()

{

 if(isempty())

 return 0;

int data = queue[front];

 front = front + 1;

 return data;

}

Circular Queue

In a normal Queue Data Structure, elements can be inserted until queue

becomes full. But once if queue becomes full, no more elements can be inserted

until all the elements are deleted from the queue. For example consider the queue

below... After inserting all the elements into the queue.

Now consider the following situation after deleting three elements from the

queue...

This situation also says that Queue is Full and the new element cannot be

inserted because, 'rear' is still at last position. In above situation, even though we

have empty positions in the queue they cannot be used to insert new element. This

is the major drawback in normal queue data structure. This is overcome in circular

queue data structure.

What’s a Circular Queue?

A circular queue is linear data structure that contains a collection of data

which allows addition of data at the end of the queue and removal of data at the

beginning of the queue. Circular queues have a fixed size.Circular queue follows

FIFO principle. Queue items are added at the rear end and the items are deleted

at front end of the circular queue.

In any queue it is necessary that:

• Before insertion, fullness of Queue must be checked (for overflow).

• Before deletion, emptiness of Queue must be checked (for underflow).

Operation of Circular Queue:

• Insertion

• Deletion

• Display the queue content

Algorithm for Circular Queue

To implement a circular queue data structure using array, we first perform

the following steps before we implement actual operations.

Step 1: Include all the header files which are used in the program and define a

constant 'SIZE' with specific value.

Step 2: Declare all user defined functions used in circular queue implementation.

Step 3: Create a one dimensional array with above defined SIZE (int

cQueue[SIZE])

Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'.

(int front = 1, rear = -1)

Step 5: Implement main method by displaying menu of operations list and make

suitable function calls to perform operation selected by the user on circular queue.

Array Implementation of Circular Queue

#define MAX 4

int CQ[MAX], n;

int r = -1;

int f = 0,ct=0;

void enqueue() //function to insert an element to queue

{

int key;

if (ct == n)

{

printf("Queue Overflow\n");

return;

}

printf("\nenter the element for adding in queue : ");

r = (r+1)%n;

scanf("%d", &key);

CQ[r]=key;

ct++;

}

void dequeue() //function to remove an element from queue

{

if (ct == 0)

{

printf("Queue Underflow\n");

return ;

}

printf("Element deleted from queue is : %d\n", CQ[f]);

f=(f+1)%n;

ct--;

}

void display()

{

int i,k=f;

if (ct == 0)

{

printf("Queue is empty\n");

return;

}

printf("contents of Queue are :\n");

for (i = 0; i < ct; i++)

{

printf("%d\t", CQ[k]);

k=(k+1)%n;

}}

enQueue(value) - Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used to insert an

element into the circular queue. In a circular queue, the new element is always

inserted at rear position. The enQueue() function takes one integer value as

parameter and inserts that value into the circular queue. We can use the following

steps to insert an element into the circular queue...

Step 1: Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front

== rear+1))

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!"

and terminate the function.

Step 3: If it is NOT FULL, then check rear == SIZE - 1 && front != 0 if it is

TRUE, then set rear = -1.

Step 4: Increment rear value by one (rear++), set queue[rear] = value and check

'front == -1' if it is TRUE, then set front = 0.

deQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from

the circular queue. In a circular queue, the element is always deleted from front

position. The deQueue() function doesn't take any value as parameter. We can

use the following steps to delete an element from the circular queue...

Step 1: Check whether queue is EMPTY. (front == -1 && rear == -1)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not

possible!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then display queue[front] as deleted element and

increment the front value by one (front ++). Then check whether front == SIZE,

if it is TRUE, then set front = 0. Then check whether both front - 1 and rear are

equal (front -1 == rear), if it TRUE, then set both front and rear to '-1' (front =

rear = -1).

display() - Displays the elements of a Circular Queue

We can use the following steps to display the elements of a circular queue...

Step 1: Check whether queue is EMPTY. (front == -1)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

function.

Step 3: If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front'.

Step 4: Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value

and increment 'i' value by one (i++). Repeat the same until 'i <= rear' becomes

FALSE.

Step 5: If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i'

value by one (i++). Repeat the same until'i <= SIZE - 1' becomes FALSE.

Step 6: Set i to 0.

Step 7: Again display 'cQueue[i]' value and increment i value by one (i++).

Repeat the same until 'i <= rear' becomes FALSE.

Double ended queue (dequeue)

Double Ended Queue is also a Queue data structure in which the insertion

and deletion operations are performed at both the ends (front and rear). That

means, we can insert at both front and rear positions and can delete from both

front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows...

✓ Input Restricted Double Ended Queue

✓ Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double ended queue, the insertion operation is performed at

only one end and deletion operation is performed at both the ends

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is

performed at only one end and insertion operation is performed at both the ends.

Deque is a variation of queue data structure, pronounced “dequeue”, which

stands for double- ended queue. In a deque values can be inserted at either the

front or the back, A collection of peas in a straw is a good example.. Queues and

deques are used in a number of ways in computer applications. A printer, for

example, can only print one job at a time. During the time it is printing there may

be many different requests for other output to be printed. To handle this printer

will maintain a queue of pending print tasks. Since you want the results to be

produced in the order that they are received, a queue is the appropriate data

structure.

For a deque the defining property is that elements can only be added or

removed from the end points. It is not possible to add or remove values from the

middle of the collection.

Operations on deque

• Insertfront

• Deletefront

• Insertrear

• Deleterear

Priority Queue

Priority Queue is similar to queue where we insert an element from the

back and remove an element from front, but with a one difference that the logical

order of elements in the priority queue depends on the priority of the elements.

The element with highest priority will be moved to the front of the queue and one

with lowest priority will move to the back of the queue. Thus it is possible that

when you enqueue an element at the back in the queue, it can move to front

because of its highest priority.

Priority Queue is an extension of queue with following properties.

1. Every item has a priority associated with it.

2. An element with high priority is dequeued before an element with low

priority.

3. If two elements have the same priority, they are served according to their

order in the queue.

A typical priority queue supports following operations.

insert(item, priority): Inserts an item with given priority.

getHighestPriority(): Returns the highest priority item.

deleteHighestPriority(): Removes the highest priority item.

✓ insert() operation can be implemented by adding an item at end of array in

O(1) time.

✓ getHighestPriority() operation can be implemented by linearly searching

the highest priority item in array. This operation takes O(n) time.

✓ deleteHighestPriority() operation can be implemented by first linearly

searching an item, then removing the item by moving all subsequent items

one position back.

There are two types of priority queues they are as follows...

✓ Max Priority Queue

✓ Min Priority Queue

Max Priority Queue

In max priority queue, elements are inserted in the order in which they arrive the

queue and always maximum value is removed first from the queue. For example

assume that we insert in order 8, 3, 2, 5 and they are removed in the order 8, 5, 3,

2.

The following are the operations performed in a Max priority queue...

✓ isEmpty() - Check whether queue is Empty.

✓ insert() - Inserts a new value into the queue.

✓ findMax() - Find maximum value in the queue.

✓ remove() - Delete maximum value from the queue.

Min Priority Queue Representations

Min Priority Queue is similar to max priority queue except removing maximum

element first, we remove minimum element first in min priority queue.

The following operations are performed in Min Priority Queue...

✓ isEmpty() - Check whether queue is Empty.

✓ insert() - Inserts a new value into the queue.

✓ findMin() - Find minimum value in the queue.

Applications of Queue:

1. It is used to schedule the jobs to be processed by the CPU.

2. When multiple users send print jobs to a printer, each printing job is kept in the

printing queue. Then the printer prints those jobs according to first in first out

(FIFO) basis.

3. Breadth first search uses a queue data structure to find an element from a graph.

