
RADIX SORT

Radix sort is a non-comparative integer sorting algorithm that sorts data

with integer keys by grouping keys by the individual digits which share the same

significant position and value.

Basic Steps to Be Performed:

Each key is first figuratively dropped into one level of buckets

corresponding to the value of the rightmost digit. Each bucket preserves the

original order of the keys as the keys are dropped into the bucket. There is a one-

to-one correspondence between the number of buckets and the number of values

that can be represented by a digit. Then, the process repeats with the next

neighbouring digit until there are no more digits to process. In other words:

1. Take the least significant digit of each key.

2. Group the keys based on that digit, but otherwise keep the original

order of keys.

3. Repeat the grouping process with each more significant digit.

The sort in step 2 is usually done using bucket sort or counting sort, which are

efficient in this case since there are usually only a small number of digits.

Step-by-step example:

Original, unsorted list:

170, 45, 75, 90, 802, 24, 2, 66

Sorting by least significant digit (1s place) gives:

170, 90, 802, 2, 24, 45, 75, 66

Sorting by next digit (10s place) gives:

802, 2, 24, 45, 66, 170, 75, 90

Sorting by most significant digit (100s place) gives:

2, 24, 45, 66, 75, 90, 170, 802

It is important to realize that each of the above steps requires just a single

pass over the data, since each item can be placed in its correct bucket without

having to be compared with other items.

C program for Radix Sort:

#include<stdio.h>

#include<conio.h>

radix_sort(int array[], int n);

void main()

https://adf.ly/KiLQs

{

 int array[100],n,i;

 clrscr();

 printf("Enter the number of elements to be sorted: ");

 scanf("%d",&n);

 printf("\nEnter the elements to be sorted: \n");

 for(i = 0 ; i < n ; i++)

 {

 printf("\tArray[%d] = ",i);

 scanf("%d",&array[i]);

 }

 printf("\nArray Before Radix Sort:"); //Array Before Radix Sort

 for(i = 0; i < n; i++)

 {

 printf("%8d", array[i]);

 }

 printf("\n");

 radix_sort(array,n);

 printf("\nArray After Radix Sort: "); //Array After Radix Sort

 for(i = 0; i < n; i++)

 {

 printf("%8d", array[i]);

 }

 printf("\n");

 getch();

}

radix_sort(int arr[], int n)

{

 int bucket[10][5],buck[10],b[10];

 int i,j,k,l,num,div,large,passes;

 div=1;

 num=0;

 large=arr[0];

 for(i=0 ; i<n ; i++)

 {

 if(arr[i] > large)

 {

 large = arr[i];

 }

 while(large > 0)

 {

 num++;

 large = large/10;

 }

 for(passes=0 ; passes<num ; passes++)

 {

 for(k=0 ; k<10 ; k++)

 {

 buck[k] = 0;

 }

 for(i=0 ; i<n ;i++)

 {

 l = ((arr[i]/div)%10);

 bucket[l][buck[l]++] = arr[i];

 }

 i=0;

 for(k=0 ; k<10 ; k++)

 {

 for(j=0 ; j<buck[k] ; j++)

 {

 arr[i++] = bucket[k][j];

 }

 }

 div*=10;

 }

 }

}

